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Abstract

Long-wave models obtained in the process of asymptotic homogenisation of structures with a characteristic length scale

are known to be non-unique. The term non-uniqueness is used here in the sense that various homogenisation strategies may

lead to distinct governing equations that usually, for a given order of the governing equation, approximate the original

problem with the same asymptotic accuracy. A constructive procedure presented in this paper generates a class of

asymptotically equivalent long-wave models from an original homogenised theory. The described non-uniqueness

manifests itself in the occurrence of additional parameters characterising the model. A simple problem of long-wave

propagation in a regular one-dimensional lattice structure is used to illustrate important criteria for selecting these

parameters. The procedure is then applied to derive a class of continuum theories for a two-dimensional square array of

particles. Applications to asymptotic structural theories are also discussed. In particular, we demonstrate how to improve

the governing equation for the Rayleigh–Love rod and explain the reasons for the well-known numerical accuracy of the

Mindlin plate theory.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Structures with a characteristic length scale occur in many areas of physics and engineering. The origin of
the length scale may be different, say, it may be the typical grain size of a particulate or the thickness of an
elastic waveguide; in all cases, these structures naturally lend themselves to continuous modelling using
singularly perturbed asymptotic models. The perturbations are invariably based on considering wave fields
that vary slowly with respect to the characteristic length scale. The resulting asymptotic models are usually
referred to as long-wave theories and the procedure of deriving them from a model with full detail as
homogenisation.

Various, sometimes contradicting, requirements on the long-wave theories resulted in a plethora of
distinct approaches to asymptotic homogenisation. These approaches are often designed to satisfy certain
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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ad hoc criteria and usually result in models with identical asymptotic accuracy. Attempts at comparing
between these models often lead to even greater confusion: where some fail to discriminate the models by their
asymptotic accuracy alone, others try to generalise from the performance in particular model problems.

All long-wave theories are, in principle, asymptotic, but they are often used in a purely numerical context.
Practitioners are well aware that infinitesimal parameter that enables asymptotic expansion is only finitely
small in practice and, sometimes, not very small. And it is not unusual for theoreticians to propose an
asymptotic model that becomes ill-posed outside of the intended domain of applicability, which may, for
example, make numerical computations unstable. This dichotomy of outlooks resulted in a curious situation
when, for example, the most widely used refined plate theory by Mindlin [1] is not even a second-order
asymptotic of the associated three-dimensional (3D) problem. The point is, the practitioners are only
concerned with the ‘‘approximation’’ part of the asymptotic approximation and theoreticians tend to ignore
it altogether.

In this paper, we discuss numerical accuracy and stability of long-wave theories when the small parameter is
not very small. This problem has been previously considered for periodically inhomogeneous elastic medium, see
Ref. [2], where newly designed variational/asymptotic homogenisation procedure was used to derive strain
gradient theories that are both asymptotically consistent and stable. Our approach is different in that it is based
on a simple formal procedure capable of generating a class of asymptotically equivalent long-wave theories from
a single original homogenised model. Thus, we are shifting focus away from the homogenisation procedure and
explore numerical performance of the otherwise equivalent long-wave models. The dispersion relations for the
generated classes of asymptotic theories turn out to be related to so-called Hermite-Padé approximants first
introduced in Padé’s original work but little studied since (this area was revived by Shafer [3]).

The described classes of theories are characterised by a number of auxiliary parameters. We use a range of
model problems to introduce and discuss several criteria to help specifying these parameters. In particular, we
look into ways to ensure numerical stability and physical relevance of the response. In doing so it is necessary
to consider the behaviour of asymptotic theories beyond their validity range. The motivation for this is purely
pragmatic in that although we cannot attach any physical significance to the results obtained beyond the
validity range of the theory, the resulting models are more useful in a purely numerical context. In every
considered case the form of the generalised theory makes it also possible to match a few extra terms of the
long-wave expansion of the exact dispersion relation. Thus, the newly formulated theories may both be
‘‘good’’ from a numerical point of view and possess extra asymptotic accuracy.

Since all of the considered long-wave theories may feature fourth and higher order spatial derivatives,
application of these theories to finite domains requires formulating appropriate boundary conditions. This is
an important and complex problem that we felt must be investigated separately. For most of the theories
discussed in this paper we identified equivalent sub-classes with modified inertia, see Ref. [4], which feature no
spatial non-locality and can therefore be used without reformulating the boundary conditions.
2. Model problem

Let us illustrate our ideas with the simple model problem first analysed by Newton. Consider a one-
dimensional (1D) regular array of particles connected by springs, see Fig. 1. If the mass of each particle is
denoted by M and the stiffness of each spring by K, then the motion of the nth particle is described by the
following equation:

M €un ¼ Kðun�1 � 2un þ unþ1Þ; n 2 I, (1)

in which the overdot denotes differentiation with respect to time and un ¼ unðtÞ � uðxn; tÞ is the longitudinal
deflection of the nth particle from the equilibrium position xn ¼ nl, where l is the interparticle distance.
xn-2 xn-1 xn xn+1 xn+2

Fig. 1. One-dimensional array of particles connected by springs.
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The steady-state response of the array to a harmonic excitation with angular frequency o may be
determined by seeking solutions of the form

un ¼ Ueiðkxn�otÞ (2)

with amplitude U and wavenumber k. When solutions (2) are inserted into the governing equation (1), one
obtains the dispersion relation for Bloch waves in the array, which may be written as

ō2 ¼ 2� 2 cos Z � 4sin2
Z
2

or Z2 ¼ arccos2 1�
ō2

2

� �
, (3)

where ō is the non-dimensional frequency and Z the non-dimensional wavenumber defined as

ō ¼
o
O
; O ¼

ffiffiffiffiffiffi
K

M

r
; Z ¼ kl. (4)

It is worth noting that all physically meaningful solutions of Eq. (3) lie within the first Brillouin zone,
i.e. jZjpp, see e.g. Ref. [5]. The described lattice structure is a classical example of low-pass filter, which only
allows propagation of waves with frequencies below the cut-off frequency ōcr ¼ 2.

2.1. Homogenisation procedure

The standard homogenisation procedure for Eq. (1) involves introducing a continuous displacement field
u � uðx; tÞ, such that uðxn; tÞ ¼ unðtÞ, and expanding un�1ðtÞ into Taylor series around unðtÞ. This enables us to
rewrite Eq. (1) in the following form:

€u ¼ O2
X1
n¼1

2

ð2nÞ!

q2nu

qx2n
l2n (5)

with the array natural frequency O defined in Eq. (4). This infinite series representation is exact, provided u is
smooth enough; it is not, however, convenient for practical purposes. The principal advantage of governing
equation (5) is best seen when it is non-dimensionalised according to

x ¼ x=k; t ¼ t=ðZOÞ (6)

which for u�ðx; tÞ � Z2luðxðx; tÞ; tðx; tÞÞ yields

q2u�

qt2
¼
X1
n¼1

2

ð2nÞ!

q2nu�

qx2n
Z2n�2. (7)

Let us now consider propagation of long waves, i.e. waves with wavelengths lbl, so that parameter
Z ¼ kl � l=l becomes small. The dispersion relation (3) may then be expanded into asymptotic series
for Z�ō! 0, yielding

ō2 ¼ Z2 �
Z4

12
þ

Z6

360
þOðZ8Þ or Z2 ¼ ō2 þ

ō4

12
þ

ō6

90
þOðō8Þ. (8)

If we assume that differentiation with respect to x and t does not change asymptotic order of non-dimensional
quantities, the series at the right-hand side of Eq. (7) may also be regarded asymptotic and truncated. In this
paper, we consider second-, fourth-, and sixth-order theories. This terminology refers to the asymptotic order of
the neglected terms.1 Specifically, these theories have the form

q2u�

qt2
¼

q2u�

qx2
þOðZ2Þ, (9)
1Our nomenclature departs here from the more common notation where the order of asymptotic theory is equal to the order of the

highest derivative. The common notation becomes inadequate when the leading order theory ceases to be hyperbolic, which will become

evident during discussion of plate bending theories in Section 4.2.
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q2u�

qt2
¼

q2u�

qx2
þ

1

12

q4u�

qx4
Z2 þOðZ4Þ, (10)

q2u�

qt2
¼

q2u�

qx2
þ

1

12

q4u�

qx4
Z2 þ

1

360

q6u�

qx6
Z4 þOðZ6Þ. (11)

The asymptotic consistency of Eqs. (9)–(11) may be evaluated by inserting harmonic wave solutions
U expðiðkx� otÞÞ � U expðiðx� ōt=ZÞÞ. It is easy to check that the resulting dispersion relations match the
first one, two or three terms of the first expansion in Eq. (8). To signify this, we will also refer to the theories
Eqs. (9)–(11) as h2; 4i, h4; 6i and h6; 8i theories, respectively. The first number in angular brackets indicates the
order in Z of neglected terms in the governing equation, the second indicates the order in Z of approximation
error of the associated dispersion relation.

The approximation error of asymptotic theories Eqs. (9)–(11) may be expressed explicitly by using the
Taylor formula with the integral (Cauchy) form of the remainder term. In the case of harmonic waves the
error is equal to the product of wave amplitude and approximation error of the dispersion relation.

2.2. Non-uniqueness

The leading order long-wave behaviour of the array is described by the hyperbolic governing equation (9)
that is unable to model the dispersion produced by the micro-structure. Higher-order theories (10) and (11)
do produce wave dispersion, but they also suffer from two subtly distinct yet closely related deficiencies.
For example, consider the dispersion relation

ō2 ¼ Z2 � 1
12
Z4 � Z2ð1� 1

12
Z2Þ, (12)

which is obtained by inserting U expðiðkx� otÞÞ into Eq. (10) and omitting non-vanishing factors. On the one
hand, it is easy to see that when Z4

ffiffiffiffiffi
12
p

harmonic wave solutions become non-propagating in a sense that
they do not possess either real wavenumber or real phase velocity. In elastodynamics this situation is usually
referred to as the loss of strong ellipticity, see Ref. [6]. From the mathematical point of view, this means that
the model becomes non-hyperbolic, see Ref. [7]. We cannot expect a long-wave theory to be fully adequate in
the short-wave regime, but the lack of hyperbolicity renders Cauchy’s problem for Eq. (10) ill-posed and can
make associated numerical simulations unstable. On the other hand, within the first Brillouin zone the exact
dispersion relation (3) associates a unique right-travelling wavenumber to every frequency below cut-off. The
dispersion relation (12) provides two wavenumbers for each frequency, e.g. when ō ¼ 0, Z ¼ 0 and Z ¼ �

ffiffiffiffiffi
12
p

(the negative sign is chosen to ensure the correct direction of energy propagation). The second wavenumber is
clearly non-physical, violates asymptotic assumptions that enabled truncation of series (7), and must be
considered as an artifact of the used homogenisation scheme.

The described deficiencies of Eq. (10) are, in fact, fairly typical of homogenised models. A common way to
deal with the problem involves treating the leading order approximation (9) as an asymptotic identity and
differentiating it twice with respect to x, so that

q4u�

qx2 qt2
�
q4u�

qx4
, (13)

which suggests replacing the fourth-order space derivative in Eq. (10) with the mixed double time double space
derivative. The associated dispersion relation

ō2 ¼
Z2

1þ Z2=12
or Z2 ¼

ō2

1� ō2=12
� ō2 þ

1

12
ō4 þOðō6Þ (14)

indicates that the new theory has the same approximation error as Eq. (10), but is always hyperbolic and
provides a unique right-propagating wavenumber for every frequency below cut-off. The possibility of
substitution (13) is well recognised; for example, it was used in Ref. [8] for the linearised Boussinesq equation,
in Ref. [9] when modelling thin plates, and recently in Ref. [10] in a homogenisation problem for long SH
waves in a periodic bi-laminate.
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The possibility of substitution (13) is a manifestation of non-uniqueness when deriving an asymptotic theory
for heterogeneous structure. The advantages of theory with mixed space/time derivatives may appear obvious,
nevertheless the choice is not quite as simple. The leading order theory (9) may as well be twice differentiated
with respect to t, yielding

q4u�

qt4
�

q4u�

qx2 qt2
. (15)

Thus, in view of Eq. (13), it is clear that the fourth-order time derivative may also serve as a substitute for the
fourth-order space derivative in Eq. (10). The resulting dispersion relation (see the right-hand side of the
identity in Eq. (14)) indicates that such theory would share all of the advantages with the theory that uses
mixed derivatives. Thus, we identified three distinct approximations of Eq. (1), all of which reproduce the
dispersion relation (3) with the same order of approximation error.

The observed non-uniqueness is related to the fact that even infinite (and convergent) asymptotic power
series do not determine their sum uniquely, see Ref. [11]. Instead, they determine an equivalence class of
functions with identical asymptotic expansions, which may differ by exponentially small terms. We deal with
truncated series and the equivalence class of functions with identical first few terms in the asymptotic expansion

is much wider. There is no simple constructive way of generating all such functions, however, it is possible to
produce a useful subset of them. Indeed, if operators Z2 q2=qx2 and Z2 q2=qt2 are applied to Eq. (9), we obtain

q4u�

qx2 qt2
Z2 ¼

q4u�

qx4
Z2 þOðZ4Þ and

q4u�

qt4
Z2 ¼

q4u�

qx2 qt2
Z2 þOðZ4Þ, (16)

respectively. Since the approximation errors of Eqs. (10) and (16) are identical, superposition ð10Þ � C1 �

ð16Þ1 � C2 � ð16Þ2 would also be a fourth-order long-wave model for our lattice structure. We may write it
explicitly as

1� Z2ðC1 � C2Þ
q2

qx2
� Z2C2

q2

qt2

� �
q2u�

qt2
¼ 1þ Z2

1

12
� C1

� �
q2

qx2

� �
q2u�

qx2
þOðZ4Þ, (17)

where C1 and C2 are arbitrary constants. The derivation of Eq. (17) involves differentiation of asymptotic
series and therefore is purely formal. However, the assumptions that enabled truncation of the infinite series in
Eq. (7) ensure that this new theory has the same asymptotic accuracy as the original theory (10).

Previously, there have been other attempts to derive general classes of long-wave theories, similar to
Eq. (17). In particular, Metrikine and Askes [12] explicitly introduced a non-locality into their definition of the
displacement field; so modified homogenisation procedure enabled them to produce one-parameter classes of
fourth- and sixth-order models. Asymptotic theory (17) is formally identical to the fourth-order model from
Ref. [12] when C2 ¼ 0. Metrikine developed these ideas further in Ref. [13], where he argued in favour of
theories with higher inertia gradients using a range of phenomenological considerations, formal comparisons
with the Timoshenko and Mindlin beam and rod theories, as well as an explicit derivation of a relevant model
for the concrete.

2.3. Parameter selection

In order to formulate the criteria for selecting parameters C1 and C2 it is necessary to study the dispersion
relation of the theory (17), given by

ō2 þ ðC1 � C2Þō2Z2 þ C2ō4 ¼ Z2 � ð 1
12
� C1ÞZ4. (18)

Since Eq. (18) is quadratic both in Z2 and in ō2, it associates two (not necessarily real) frequencies with every
wavenumber and two (possibly, imaginary) wavenumbers with every frequency. Our original mechanical
model does not exhibit such a complex behaviour, associated with higher gradients of strain and inertia
entering the governing equation. This may be interpreted as introduction of both spatial and temporal non-
locality into the model. Another useful way of understanding the situation would be to assume that we are
trying to reproduce the behaviour of the original single atom chain, in which interactions happen between
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nearest neighbours only, using a more complex lattice structure. Non-single-valuedness in Z2 corresponds to
structures where atoms simultaneously interact with multiple neighbours, whereas non-single-valuedness in ō2

corresponds to lattices comprising multiple types of atoms, see Ref. [14].
Both inertia and strain gradients are capable of describing the dispersion of waves in the lattice structure,

however both of them induce spurious features into the response. Governing equations with higher gradients
of strain may have solutions with spurious non-physical terms, associated with extraneous solutions of
the dispersion relation, as in Eq. (12). For instance, the low-frequency expansion of the extraneous solution in
Eq. (18) is given by

Z2 ¼
12

1� 12C1
�

1� 12C2

1� 12C1
ō2 þOðō4Þ, (19)

so its limit becomes imaginary when C14 1
12

and does not exist when C1 ¼
1
12
. A real low-frequency limit of

Eq. (19) corresponds to the loss of hyperbolicity, thus we term the associated theories numerically unstable.
Higher inertia gradient terms result in the presence of extraneous high-frequency branches in the dispersion
relation. In particular, the long-wave expansion of the extraneous branch in Eq. (18) may be written as

ō2 ¼ �
1

C2
�

C1

C2
Z2 þOðZ4Þ, (20)

thus C2o0 corresponds to the presence of spurious propagating solutions for frequencies ō4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1=C2

p
.

Consequently, we cannot use Eq. (17) above the extraneous branch cut-off ō ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1=C2

p
and will refer to this

situation by saying that the theory (17) is bandwidth-limited when C2o0. While the numerically unstable
theories are not suitable for numerical simulations, bandwidth-limited theories may describe both stationary
and non-stationary dynamics of micro-structure at frequencies below the extraneous branch cut-off. In fact,
many relevant engineering problems are already bandwidth-limited, for example vibration of thin plates or
stress pulse propagation in thin bars.

A more subtle difference between the theories with strain and inertia gradients is related to the choice of
appropriate boundary and initial conditions. In order to use the theory with higher strain gradients and,
therefore, spatial non-locality manifested in the presence of extraneous solutions, it is necessary to formulate
additional boundary conditions. The difficulty of formulating consistent conditions may be greater than the
derivation of the asymptotic theory itself. On the contrary, theories with inertia gradients require additional
initial conditions, which are only necessary for non-stationary problems. Thus, it appears to be beneficial to
consider theories that contain higher gradients of inertia only. Generally, this can only be achieved in a scalar
context and was previously done in Ref. [9] for asymptotic models of thin plates. The resulting theories were
termed ‘‘dynamic’’ to signify their likely applications. Kaplunov et al. [4] refer to these asymptotic theories as
theories with modified inertia. This is the term that we will use in our paper.

The class of theories with modified inertia may be obtained from Eq. (17) by specifying C1 ¼
1
12
. The

associated dispersion relation is obtained from Eq. (18) by solving for Z2, expanding for small ō, and yielding

Z2 ¼
ō2ð1þ C2ō2Þ

1þ ðC2 � 1=12Þō2
� ō2 þ

ō4

12
þ

1

144
�

C2

12

� �
ō6 þOðō8Þ. (21)

Parameter C2 may be chosen arbitrarily, e.g. by numerical fitting of the approximate dispersion relation (21)
into the exact dispersion relation (3). For example, the theory with C2 ¼ �0:0635 reproduces the exact
dispersion relation for ōo1:62 with 0.1% relative accuracy. The theory with C2 ¼ �0:0804 is 1% accurate
for ōo1:93.

Probably the best analytic guess for value of C2 may be obtained by matching the third-order term of the
expansion in Eq. (21) with the appropriate term of Eq. (8), thus C2 ¼ �

1
20
. Firstly and obviously, this ensures

that the governing equation of our asymptotic theory is accurate to OðZ8Þ. Secondly, the dispersion relation
(21) may be recognised as a ½1=1� Padé approximant in ō2 for the exact dispersion relation (3), see Ref. [15].
The dispersion relation of the proposed asymptotic theory would share both the improved asymptotic
accuracy and good numerical convergence properties of the Padé approximant. This links our model to the
one described in Ref. [16], however, their approach does not generate higher gradients of inertia. It is
worth remarking that the dispersion relation (18) may also be interpreted as a quadratic Padé approximant,
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see Ref. [3]. Higher order theories would produce higher order generalised Padé (or Hermite-Padé)
approximants.

The resulting h4; 8i theory with modified inertia (C1 ¼
1
12

and C2 ¼ �
1
20
) has the following dimensional

representation:

1�
2l2

15

q2

qx2
þ

1

20O2

q2

qt2

� �
€u ¼ O2 q

2u

qx2
l2. (22)

Its numerical performance is demonstrated in Fig. 2. Fig. 2(a) presents the dispersion curves for the exact
dispersion relation (3), as well as for original (10) and modified inertia (22) theories. Better accuracy of
Eq. (22) in the medium wavelength range is apparent by inspection. The plot of relative approximation errors
in Fig. 2(b) indicates that the new theory offers at least half an order reduction of error magnitude when
compared to Eq. (10).

2.4. Application to statics

The parameter selection criteria indicated in the previous section may at first appear confusing. While the
reasons for using theories with inertia gradients are fairly convincing when applied to wave propagation
problems, they may appear less appealing in statics. Indeed, our favoured theory (22), when specialised to
statics, does not possess any higher-gradient terms at all!

This behaviour is not coincidental. When fine-tuning asymptotic theories for problems of wave
propagation, we had full information about characteristic lengths of the involved wave fields. On the
contrary, we have not specified a characteristic length scale of the static problem of interest and therefore
cannot rationally discriminate between various theories. Thus, to formulate a statics theory we need to
reformulate governing equation (5) by introducing an external force field F ¼FðxÞ and yielding

X1
n¼1

2

ð2nÞ!

q2nu

qx2n
l2n
þ

F

K
¼ 0. (23)

If we now require that F is sufficiently smooth and periodic with the period Lbl, Eq. (23) may again be non-
dimensionalised according to Eq. (6) with Z ¼ l=L and truncated. An appropriate fourth-order theory would
take the following form:

q2u�

qx2
þ

lF

K
þ

1

12

q4u�

qx4
Z2 ¼ OðZ4Þ, (24)

where u�ðxÞ � Z2luðxðxÞÞ. By considering the leading order terms of this equation it is clear that the higher
strain gradient term is not arbitrary, but depends on the gradient of external stress. The appropriate class of
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asymptotically equivalent theories may then be obtained by twice differentiating the leading order of Eq. (24)
and superimposing it with the original theory, so that

q2u�

qx2
þ

lF

K
þ

1

12
� C

� �
q4u�

qx4
�

Cl

K

q2F

qx2

� �
Z2 ¼ OðZ4Þ (25)

in which C is an arbitrary constant. A glance at Eq. (25) reveals that our previous statement that F has to
be sufficiently smooth should be interpreted as the requirement that q2F=qx2 is of the same asymptotic order
as F.
2.5. Theories of order six and higher

The formal procedure employed in the previous sections may be naturally extended to higher-order
asymptotic theories, however the benefits of such generalisation are ambiguous. First, the numerical accuracy
of the asymptotic model is typically maximised when it is truncated at the optimal (numerically smallest) term,
see e.g. Ref. [17]. Second, difficulties with numerical implementation of higher-order derivatives may
overweigh the benefits of using asymptotic model. Thus, we only provide indicative examples of higher-order
theories in this paper.

The class of sixth-order theories, asymptotically equivalent to theory (11), may be generated by applying
operators Z4q4=qx4, Z4q4=qx2 qt2 and Z4q4=qt4 to asymptotic equality (9) and Z2 q2=qx2 and Z2 q2=qt2 to
Eq. (10). The superposition of the resulting asymptotic equalities may be written as

1� Z2ðC1 � C2Þ
q2

qx2
� Z2C2

q2

qt2
þ Z4 C3 � C4 þ

C2

12

� �
q4

qx4
þ Z4ðC4 � C5Þ

q4

qx2 qt2
þ Z4C5

q4

qt4

� �
q2u�

qt2

¼ 1þ Z2
1

12
� C1

� �
q2

qx2
þ Z4

1

360
�

C1

12
þ C3

� �
q4

qx4

� �
q2u�

qx2
þOðZ6Þ, (26)

where C1; . . . ;C5 are arbitrary constants. The class of theories obtained in Ref. [12] is reproduced when
C2 ¼ C4 ¼ C5 ¼ 0 and C3 is a certain function of C1. Theories (26) are numerically stable when

6D � 6C2
1 þ C1 � 24C3 �

1

40
p0 or

12C1 � 1þ 2
ffiffiffiffi
D
p

2C1 � 24C3 � 1=15
p0. (27)

Theories with modified inertia are obtained by selecting C1 ¼
1
12
, C3 ¼

1
240

and 240C4 ¼ 20C2 þ 1, parameters

C2 and C5 may be chosen arbitrarily. In particular, when C2 ¼ �
49
276

and C5 ¼
79

28;980 the dispersion relation of

theory (26) is a ½2=2� Padé approximant in ō2 of the exact dispersion relation for v̄2. However, the numerical
performance of so-formulated h6; 12i theory is not significantly better and, for higher wavenumbers, worse
than the corresponding h4; 8i theory (22).
3. Two-dimensional square lattice structure

Examples in the previous section demonstrated how gradients of strain may be adjoined or replaced by
gradients of inertia in 1D problems and the advantages of so-formulated models. The technique is easily
generalised to those two-dimensional (2D) problems that are still scalar in nature, i.e. that are reducible to a
problem for a combination of uncoupled scalar potentials. For example, this is the case for isotropic media as
well as certain special types of anisotropy, see Ref. [18]. In order to illustrate the difficulties one encounters
when dealing with non-scalar models we consider a somewhat simplified version of a square lattice structure
studied previously in Ref. [19], see Fig. 3. The equations of motion for the structure are given by

M €um;n ¼ K1ðum;n�1 � 2um;n þ um;nþ1Þ þ K2ðum�1;n � 2um;n þ umþ1;nÞ

þ K0ðum�1;n�1 þ umþ1;n�1 þ um�1;nþ1 þ umþ1;nþ1 þ vm�1;n�1

� vmþ1;n�1 � vm�1;nþ1 þ vmþ1;nþ1 � 4um;nÞ=2, (28)
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M €vm;n ¼ K1ðvm�1;n � 2vm;n þ vmþ1;nÞ þ K2ðvm;n�1 � 2vm;n þ vm;nþ1Þ

þ K0ðvm�1;n�1 þ vm�1;nþ1 þ vmþ1;n�1 þ vmþ1;nþ1 þ um�1;n�1

� um�1;nþ1 � umþ1;n�1 þ umþ1;nþ1 � 4vm;nÞ=2, (29)

where ðu; vÞm;n is the displacement vector for a particle situated at ðxm; ynÞ � ðml; nlÞ, m; n 2 I, with l denoting
interparticle distance. M is the particle mass, and K0, K1, and K2 are the stiffnesses of diagonal longitudinal,
axial longitudinal and axial shear springs, respectively.

The dynamic behaviour of the lattice may be assessed by considering propagation of harmonic waves,
defined as

ðu; vÞm;n ¼ ðU ;V Þ e
iðkcyxmþksyyn�otÞ, (30)

where t is time, k is wavenumber and o is circular frequency, as before. Parameters cy and sy are direction
cosines for the wave normal, c2y þ s2y ¼ 1. By inserting solutions (30) into equations of motion (28) and (29),
the exact dispersion relation for the square lattice is obtained in the form:

sin2ðZcyÞsin
2
ðZsyÞ

¼ ðō2 þ b1 cosðZsyÞ þ cosðZcyÞ cosðZsyÞ þ b2 cosðZcyÞ � b1 � b2 � 1Þ

�ðō2 þ b1 cosðZcyÞ þ cosðZcyÞ cosðZsyÞ þ b2 cosðZsyÞ � b1 � b2 � 1Þ, (31)

within which we introduced

b1 ¼
K1

K0
; b2 ¼

K2

K0
; ō ¼

ffiffiffiffiffiffiffiffiffi
M

2K0

r
o and Z ¼ kl. (32)

Numerical analysis of Eq. (31) reveals the presence of two long-wave low-frequency solution branches that are
coupled because of the lattice structure anisotropy and may be referred to as quasi-longitudinal (QL) and
quasi-transversal (QT). The long-wave limits of the phase velocity v̄ ¼

ffiffiffi
2
p

ō=Z for these modes are the
solutions of the secular equation

v̄40 � ðaþ gÞv̄20 þ ags4y � ð4� a2 � g2Þs2yc
2
y þ agc4y ¼ 0; Z! 0, (33)

where a � b1 þ 1 and g � b2 þ 1. A more general ansatz v̄2 ¼ v̄20 þ v̄22Z
2 þ v̄24Z

4 þOðZ6Þ may be used in
conjunction with Eq. (31) to determine further refinements to the leading order long-wave approximation (33),
but the amount of algebra involved into such analysis cannot be justified within this paper. We will, therefore,
refine our asymptotic theories on the basis of long-wave expansions of Eq. (31) along particular directions
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ðcy; syÞ � ðcos y; sin yÞ, where y ¼ 0, y ¼ p=4 or y ¼ p=2. Longitudinal and transversal modes are not
coupled along these directions and the appropriate expansions for both long-wave branches are given
explicitly as

v̄2L
a
¼

v̄2T
g
¼ 1�

Z2

12
þ

Z4

360
þOðZ6Þ; y ¼ 0 or

p
2
, (34)

2v̄2L
aþ gþ 2

¼ 1�
ðaþ gþ 14Þ

24ðaþ gþ 2Þ
Z2 þ

ðaþ gþ 62Þ

1440ðaþ gþ 2Þ
Z4 þOðZ6Þ,

2v̄2T
aþ g� 2

¼ 1�
Z2

24
þ

Z4

1440
þOðZ6Þ; y ¼

p
4
. (35)

3.1. Long-wave models

We employ virtually identical homogenisation procedure to the one used for 1D array of particles.
Specifically, we non-dimensionalise equations of motion (28) and (29) according to

x ¼ x=k; y ¼ z=k; t ¼ t
ffiffiffiffiffiffi
M
p

=ðZ
ffiffiffiffiffiffi
K0

p
Þ (36)

and expand the displacements into the Taylor series around a central particle ðu; vÞ � ðu; vÞm;n. After
appropriately truncating the series, we obtain a h4; 6i asymptotic theory governed by the following equations
of motion:

g
q2u

qx2
þ 2

q2v
qx qz

þ a
q2u

qz2
�

q2u

qt2
þ

1

3

g
4

q4u

qx4
þ

q4v

qx3 qz
þ

3

2

q4u

qx2 qz2
þ

q4v

qx qz3
þ

a
4

q4u

qz4

� �
Z2 ¼ OðZ4Þ, (37)

a
q2v

qx2
þ 2

q2u
qx qz

þ g
q2v

qz2
�

q2v
qt2
þ

1

3

a
4

q4v

qx4
þ

q4u

qx3 qz
þ

3

2

q4v

qx2 qz2
þ

q4u

qx qz3
þ

g
4

q4v

qz4

� �
Z2 ¼ OðZ4Þ. (38)

The essentially non-scalar nature of the coupled equations (37) and (38) is manifested by the presence of a
number of additional gradient terms, when compared to, e.g. Eq. (10) or Eq. (11). This results in a higher
number of options when Eqs. (37) and (38) are generalised. To this end, we consider superpositions of Eq. (37)

with Z2 q2=qx2, Z2 q2=qz2 and Z2 q2=qt2 applied to Eq. (37) and Z2 q2=qx qz applied to Eq. (38), i.e.

ð1þ Z2ðC11q
2=qx2 þ C12q

2=qz2 þ C13q
2=qt2ÞÞ � ð37Þ þ C14 � ð38Þ. This yields

g
q2u

qx2
þ 2

q2v
qx qz

þ a
q2u

qz2
�

q2u

qt2
þ g C11 þ

1

12

� �
q4u

qx4
þ a C12 þ

1

12

� �
q4u

qz4

�

þ 2C11 þ aC14 þ
1

3

� �
q4v

qx3 qz
þ aC11 þ gC12 þ 2C14 þ

1

2

� �
q4u

qx2 qz2

þ 2C12 þ gC14 þ
1

3

� �
q4v

qx qz3
þ ð2C13 � C14Þ

q4v
qt2 qx qz

� C13
q4u
qt4

þðgC13 � C11Þ
q4u

qt2 qx2
þ ðaC13 � C12Þ

q4u

qt2 qz2

�
Z2 ¼ OðZ4Þ, (39)

where C11, C12, C13 and C14 are arbitrary constants. The second generalised governing equation is obtained

in a similar fashion, by combining Eq. (38) with Z2 q2=qx2, Z2 q2=qz2 and Z2 q2=qt2 applied to Eq. (38) and
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Z2 q2=qx qz applied to Eq. (37), with the result ð1þ Z2ðC21q
2=qx2 þ C22q

2=qz2 þ C23q
2=qt2ÞÞ � ð38Þ þ C24 �

ð37Þ given by

a
q2v

qx2
þ 2

q2u
qx qz

þ g
q2v

qz2
�

q2v
qt2
þ a C21 þ

1

12

� �
q4v

qx4
þ g C22 þ

1

12

� �
q4v

qz4

�

þ 2C21 þ gC24 þ
1

3

� �
q4u

qx3 qz
þ gC21 þ aC22 þ 2C24 þ

1

2

� �
q4v

qx2 qz2

þ 2C22 þ aC24 þ
1

3

� �
q4u

qx qz3
þ ð2C23 � C24Þ

q4u

qt2 qx qz
� C23

q4v

qt4

þðaC23 � C21Þ
q4v

qt2 qx2
þ ðgC23 � C22Þ

q4v

qt2 qz2

�
Z2 ¼ OðZ4Þ. (40)

Again, constants C21, C22, C23 and C24 may be chosen arbitrarily.
An inspection of generalised governing equations (39) and (40) immediately reveals that they have ten

different fourth-order spatial derivative terms. Since a theory with modified inertia cannot possess higher
order spatial derivatives, it would require vanishing of all ten corresponding coefficients in both governing
equations. Unfortunately, these coefficients depend on only eight arbitrary constants. Thus, it is generally
impossible to select C11; . . . ;C24 such that all of the higher order spatial derivative terms vanish from Eqs. (39)
and (40), except, possibly, for some special combinations of spring stiffnesses. This also suggests that in the
non-scalar context, generally, it is not possible to create asymptotic theories that do not possess extraneous
solutions. Therefore, spatial non-locality is an unavoidable feature of vector asymptotic models and if the
model is intended for using on finite domains, the appropriate boundary conditions must be formulated.
3.2. Example of parameter selection

Detailed analysis of the options available for selecting parameters for Eqs. (39) and (40) is a fairly complex
and, to a large extent, numerical problem. Thus, we only indicate a possibly useful parameter selection
procedure, with no claims at generality or optimality. We start by noting that in order for the asymptotic
theory to reproduce the expected symmetric response for propagation along Ox and Oz, it is necessary to set
C21 ¼ C12, C22 ¼ C11, C23 ¼ C13 and C24 ¼ C14. The numerical stability of Eqs. (39) and (40) can be ensured
by using necessary and sufficient conditions for stability when propagating along y ¼ 0 and y ¼ p=2, which
are given by

C11p� 1
12
; C12p� 1

12
. (41)

We also use necessary and sufficient condition for stability when propagating along y ¼ p=4 that is equivalent
to ensuring that the following bi-quadratic equation for Z has no real roots:

ðC0 � C14Þð1þ mðC0 þ C14ÞÞZ4 � 12ð1þ 2mC0ÞZ2 þ 24m ¼ 0, (42)

where C0 ¼ 1
12
þ C11 þ C12 and m ¼ 2þ aþ g. Since conditions (41) and (42) are not sufficient to ensure

numerical stability for all y, additional numerical tests have to be performed to ensure the numerical stability
for all directions of propagation.

It is impossible to refine the asymptotic accuracy of the model (39), (40) for all of y 2 f0;p=4;p=2g. For our
specific choice of parameters a ¼ 6

5
and g ¼ 9

10
, it turned out beneficial to match OðZ4Þ terms in expansions (34)

by selecting

C11 ¼ �
a� gð30C12 þ 1Þ

30a
; C13 ¼ �

30C12 þ 1

30a
. (43)

Only one of the expansions (35) can be further refined; we chosen C13 such that the resulting theory is less
limited in bandwidth. Finally, the value of C12 was chosen by considering numerical stability conditions (41)
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and (42), with the resulting set of parameters given by

C11 ¼ C22 ¼ �
641

1320
; C12 ¼ C21 ¼ �

7

11
,

C13 ¼ C23 ¼
199

396
; C14 ¼ C24 ¼ �

514

495
. (44)

The numerical performance of the so-defined model is illustrated in Fig. 4. The dispersion curves for frequency
versus wavenumber are given in Fig. 4(a) for y ¼ p=6. There are two speeds of sound in this vector problem
and two exact dispersion curves (thick solid) exhibit strong coupling behaviour for Z 	 3:5. The original
theory of (37), (38) (thin solid curves) crudely reproduces this coupling behaviour. The numerical instability of
the theory manifests itself by the first branch becoming non-propagating at Z 	 2:5. The refined asymptotic
theory (39), (40) and (44) (dotted and dashed curves) has two spurious branches with cut-off frequency ō 	 1
and, therefore, is bandwidth limited. However, both relevant (long-wave low-frequency) branches are
numerically stable; this seems to be true for all y. The accuracy can be assessed by considering relative
approximation errors plotted in Fig. 4(b) for two fixed values of Z and a full range of angles y.

4. Application to asymptotic structural theories

Although the term ‘‘strain gradient theory’’ is usually associated with the modelling of micro-structure,
long-wave approximations for simple engineering structures—rods, beams, plates and shells—were among the
first asymptotic theories with higher gradients of strain to be derived and used in practice. Many modern
gradient models of micro-structure are governed by the equations that are formally equivalent to asymptotic
models of simple structures. We illustrate this similarity by using our procedure in the context of several well-
known structural theories.

4.1. Longitudinal waves in a cylindrical rod

One of the first structural theories to incorporate higher gradients of strain was the theory for longitudinal
waves in a thin cylindrical rod of radius R. The higher order (lateral inertia) correction was proposed by
Rayleigh [20]; Love [21] derived the appropriate governing equation

c20
q2u
qx2
¼ 1�

n2R2

2

q2

qx2

� �
€u, (45)

where u ¼ uðx; tÞ is the longitudinal displacement, n is the Poisson ratio, c0 �
ffiffiffiffiffiffiffiffiffi
E=r

p
the bar velocity,

E the Young modulus and r the material density. The dispersion relation of Eq. (45) matches two terms of
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the long-wave low-frequency expansion of the Pochhammer–Chree dispersion relation, see e.g. Ref. [22],
which may be written as

Z2 ¼ ō2 þ
n2

2
ō4 þ

n2ð4n3 � 8n2 � 4nþ 7Þ

48ð1� n2Þ
ō6 þOðō8Þ (46)

with ō � oR=c0 and Z ¼ kR. Therefore, Love’s equation (45) is a h4; 6i asymptotic theory for cylindrical rods.
Governing equation (45) may be recognised as a particular case of the fourth-order theory for 1D array of

particles (17). Thus, we introduce similar scaling x ¼ kx, t ¼ c0kt, and generate a class of theories in the form

1� Z2C1
q

qx2

� �
q2u�

qx2
¼ 1� Z2C2

q
qt2
� Z2 C1 � C2 þ

n2

2

� �
q

qx2

� �
q2u�

qt2
, (47)

in which u� � lu. The associated dispersion relation is given by

C2ō4 þ ō2 þ
n2

2
þ C1 � C2

� �
ō2Z2 � Z2 � C1Z4 ¼ 0. (48)

It is easy to check that the low-frequency limit of the extraneous solution is Z2 ¼ �1=C1 and the long-wave
high-frequency limit of the extraneous branch is ō2 ¼ �1=C2. Thus, numerical stability requires C1X0;
theories with C2X0 are not bandwidth limited.

The original model (45) is a h4; 6i theory with modified inertia. A h4; 8i theory with modified inertia may be
obtained by selecting

C1 ¼ 0; C2 ¼ �
fðnÞ

24ð1� n2Þ
; fðnÞ � 12n4 þ 4n3 � 20n2 � 4nþ 7 (49)

and is bandwidth limited for positive n. Many engineering rod theories were derived with the assumption that
their short-wave velocity limit equals the velocity of the Rayleigh wave cR, as in exact Pochhammer–Chree
dispersion relation. We may also achieve this by selecting

C1 ¼ c2R
ðfðnÞc2R � 4n3 þ 8n2 þ 4n� 7Þ

24ðn2 � 1Þð1� c2RÞ
2

, (50)

C2 ¼
ð24n4 þ 4n3 � 32n2 � 4nþ 7Þc2R � fðnÞ

24ð1� n2Þð1� c2RÞ
2

. (51)

It is important to realise that any short-wave behaviour of a long-wave theory is equally meaningless. While
the h4; 8i theory with parameters (50) and (51) may produce better-looking dispersion curves in the short-wave
limit, it also possesses extraneous solution terms, which may and will distort the solutions of boundary value
problems unless special boundary conditions are formulated.

The behaviour of theory with parameters (50) and (51) is quite similar to that of the rod theory by Mindlin
and Herrmann [23]. It is easy to check that the Mindlin–Herrmann theory is not fourth-order asymptotic and,
consequently, cannot be represented in the form (47). By restricting the ‘‘tuning’’ parameters to k21 ¼
1� k2=2ðnþ 1Þ it can be made a h4; 6i asymptotic theory. However, regardless of a particular choice of k and
k1, the approximation accuracy of both h4; 8i theories with Eqs. (49) and (50), (51) is significantly better, which
is demonstrated in Fig. 5. The axisymmetric branch of the Pochhammer–Chree dispersion relation is
notoriously difficult to reproduce, and none of the considered theories quite manages to follow the
fundamental mode in Fig. 5(a). The plot of relative approximation errors in Fig. 5(b) clearly demonstrates the
benefits of using the h4; 8i theory with modified inertia (49). It may be re-written in terms of dimensional
variables as

c20
q2u
qx2
¼ 1þ

R2ð4n3 � 8n2 � 4nþ 7Þ

24ð1� n2Þ
q2

qx2
�

R2fðnÞ
24c20ð1� n2Þ

q2

qt2

� �
€u (52)

and deserves to become the long-wave theory of choice for modelling rods.
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4.2. Bending of a thin plate

For another example of asymptotic model for engineering structures we select a dynamic plate bending
theory from Ref. [9]. A governing equation of the sixth-order theory is given by

DD2wþ 2rh 1þ h2 7n� 17

15ð1� nÞ
Dþ h2 ð422� 424n� 33n2Þ

1050ð1� nÞc22

q2

qt2

� �
€w ¼ 0, (53)

where w is the mid-surface deflection, D � 2Eh3=3ð1� n2Þ the flexural rigidity, E the Young modulus, n the
Poisson ratio, c2 �

ffiffiffiffiffiffiffiffi
m=r

p
the shear wave speed, m the shear modulus, r the density, h the plate half-thickness

and the Laplace operator D ¼ q2=qx2 þ q2=qz2. This modified inertia theory reproduces three terms in the long-
wave low-frequency expansion of the Rayleigh–Lamb dispersion relation for anti-symmetric modes, given by

ō2 ¼ Z4 �
7n� 17

15ðn� 1Þ
Z6 þ

62n2 � 418nþ 489

315ðn� 1Þ2
Z8 �

ð381n3 � 4995n2 þ 14613n� 11189Þ

4725ðn� 1Þ3
Z10 þOðZ12Þ, (54)

in which ō �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð1� nÞ

p
oh=2c2 and Z � kh, see e.g. Ref. [22]. The asymptotic structure of Eq. (53) may be made

more explicit by an appropriate non-dimensionalisation. Motivated by Eq. (54), we introduce

x ¼ x=k; y ¼ z=k; t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð1� nÞ

p
2c2kZ

t (55)

and recast Eq. (53) in the form

q2w�

qt2
þ D2

�w
� þ
ð7n� 17Þ

15ð1� nÞ
q2D�w�

qt2
Z2 �
ð33n2 þ 424n� 422Þ

1575ð1� nÞ2
q4w�

qt4
Z4 ¼ 0 (56)

with w�ðx; z; tÞ � Z2lwðx; z; tÞ and D� � q2=qx2 þ q2=qz2. h6; 10i theory (56) is different from all other theories we
discussed so far in that its leading order is not hyperbolic. This results in the presence of asymptotic correction
terms of varying orders, which reduces the number of options when formulating the class of asymptotically
equivalent theories. To this end, we apply operators Z2D�, Z4D2

� and Z4q2 qt2, and obtain the superposition

q2w�

qt2
þ D2

�w
� þ C1D3

�w
� þ C1 þ

7n� 17

15ð1� nÞ

� �
q2D�w�

qt2

� �
Z2

þ C3D4
�w
� þ C2 þ C3 þ C1

7n� 17

15ð1� nÞ

� �
q2D2

�w
�

qt2

�

þ C2 �
33n2 þ 424n� 422

1575ð1� nÞ2

� �
q4w�

qt4

�
Z4 ¼ 0, (57)
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where constants C1; . . . ;C3 satisfy one of the following conditions

C2
1p4C3 or

C1

C3
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

1

C2
3

�
4

C3

s
p0. (58)

For the sake of brevity we only consider theories with modified inertia for which C1 ¼ C3 ¼ 0. A slight
improvement on Eq. (56) may be obtained by comparing the dispersion relation of Eq. (57) with Eq. (54) and
matching the OðZ10Þ term. Thus, a h6; 12i variant of Eq. (54) requires

C1 ¼ C3 ¼ 0; C2 ¼
197n2 � 64nþ 32

1575ðn� 1Þð7n� 17Þ
. (59)

It is instructive to compare the discussed asymptotic models with the popular Mindlin plate theory given by

2rh
q2w
qt2
þ D�

r
k2m

q2

qt2

� �
DD�

2rh3

3

q2

qt2

� �
w ¼ 0 (60)

with the ‘‘shear coefficient’’ k2 to be chosen, see Ref. [1]. Similarly to the case of the Mindlin–Herrmann rod
theory, this theory is not fourth-order asymptotic, merely approximate. It can be made fourth-order asymptotic
by selecting k2 ¼ 5=ð6� nÞ, see Ref. [24] and references therein. Mindlin suggested using ‘‘a compromise
between’’ k2 ¼ p2=12 or k2 ¼ c2R=c22, which are crude lower and upper bounds of the asymptotically correct
value (cR is the Rayleigh wave speed). In fact, if we select k2 ¼ 5=ð6� nÞ and rewrite Eq. (60) in terms of the
non-dimensional variables used in Eq. (56), the result will only differ from Eq. (56) in the coefficient of OðZ6Þ
term. Specifically, instead of

422� 424n� 33n2

1575ð1� nÞ2
Mindlin’ s theory has

2ð6� nÞ
45ð1� nÞ

which differ by no more then 5% for all positive Poisson ratios. Thus, Mindlin’s theory may be recognised as a
version of the asymptotically consistent governing equation (56) with slightly perturbed coefficients.

Our observations are supported by the dispersion curves in Fig. 6. The plot in Fig. 6(a) seems to
demonstrate that all three theories (56), (57)–(59) and (60) are fairly accurate even in the range of moderate
wave lengths. The Mindlin plate theory appears to be the most accurate, because its short-wave limit is fitted
into the Rayleigh wave speed limit (we used k2 ¼ c2R=c22). However, as is easily seen from Fig. 6(b), Mindlin’s
model is significantly less accurate than both (56) and (57)–(59) within the range of its likely applications. It is
also worth noting that the added asymptotic accuracy of the h6; 12i theory (57)–(59) is actually reducing the
range of accurate approximation, which confirms our considerations from Section 2.5.
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Fig. 6. Exact (thick solid) and approximate (thin solid, dotted and dashed) dispersion curves for the theories of plate bending when

n ¼ 0:25: (a) phase velocity v̄ � v=c2 of harmonic waves against wavenumber; (b) relative approximation error against wavenumber.
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Since there already exists a large number of numerical (finite element) implementations of the Mindlin
theory, it seems appropriate to suggest using the formally equivalent plate theory from Ref. [9] instead. This
would only require to specify k2 ¼ 5=ð6� nÞ and use the modified governing equation

2rh
q2w

qt2
þ D�

r
k2m

q2

qt2

� �
DD�

2rh3

3

q2

qt2

� �
w ¼

Dð103n2 � 66n� 2Þ

700c22

q4w
qt4

. (61)

5. Conclusion

We demonstrated how relatively simple manipulations may significantly improve dynamic response of
existing long-wave theories, which would be most relevant to stationary dynamics. Our procedure presents a
natural way of ‘‘retrofitting’’ old asymptotic theories. The h4; 8i rod theory with modified inertia, obtained in
Section 4.1 from the Rayleigh–Love governing equation, is, to our best knowledge, the most accurate fourth-
order rod theory available. While asymptotic models for bending cannot be significantly improved, we both
explained the well-known numerical performance of Mindlin’s plate theory and indicated useful modifications
of it.

Our observations also demonstrate that it is usually possible to formulate theories that approximate
governing equations more accurately than the other aspects of the problem, e.g. distributions of displacements
and stresses across the thickness for plate and shell theories. Therefore, the dispersion relation cannot be
considered a sole indicator of accuracy of the asymptotic theory.

Finally, we reiterate that our discussion does not touch upon the question of selecting appropriate boundary
conditions for asymptotic governing equations. While the theories with modified inertia may be used without
reformulating the boundary conditions, we demonstrated that this option is not generally available in the two-
dimensional setting. Therefore, the problem of efficient derivation of the appropriate boundary conditions
remains open and will become a subject of a separate investigation.
References

[1] R.D. Mindlin, Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates, Journal of Applied Mechanics 18

(1951) 31–38.

[2] V.P. Smyshlyaev, K.D. Cherednichenko, On rigorous derivation of strain gradient effects in the overall behaviour of periodic

heterogeneous media, Journal of the Mechanics and Physics of Solids 48 (6–7) (2000) 1325–1357.

[3] R.E. Shafer, On quadratic approximation, SIAM Journal on Numerical Analysis 11 (2) (1974) 447–460.

[4] J.D. Kaplunov, L.Y. Kossovich, E.V. Nolde, Dynamics of Thin Walled Elastic Bodies, Academic Press, New York, 1998.

[5] C. Kittel, Introduction to Solid State Physics, Wiley, New York, 1996.

[6] C.-C. Wang, C. Truesdell, Introduction to Rational Elasticity, Noordhoff International Publishing, Leyden, 1973.

[7] R. Courant, D. Hilbert, Methods of Mathematical Physics, Vol. II: Partial Differential Equations, Wiley, New York, 1989.

[8] G.B. Whitham, Linear and Nonlinear Waves, Wiley, New York, 1974.

[9] A.L. Goldenveizer, J.D. Kaplunov, E.V. Nolde, On Timoshenko-Reissner type theories of plates and shells, International Journal of

Solids and Structures 30 (5) (1993) 675–694.

[10] W. Chen, J. Fish, A dispersive model for wave propagation in periodic heterogeneous media based on homogenization with multiple

spatial and temporal scales, Journal of Applied Mechanics 68 (3) (2001) 153–161.
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